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What is MVC?

• Model-View-Controller (MVC)

• Standard Architectural Pattern

• Separation of concerns:
model, view, controller
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ASP .NET MVC Framework

• An alternative to ASP .NET Web Forms

• Presentation framework
– Lightweight

– Highly testable

– Integrated with the 
existing ASP .NET 
features:
• Master pages

• Membership-Based 
Authentication

• ...
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ASP .NET MVC Framework 
Components

• Models
– Business/domain logic
– Model objects, retrieve and store model state in a 

persistent storage (database).

• Views
– Display application’s UI
– UI created from the model data

• Controllers
– Handle user input and interaction
– Work with model
– Select a view for rendering UI
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When to use MVC approach?

• Advantages:

– Easier to manage complexity (divide and conquer)

– It does not use server forms and view state

– Front Controller pattern (rich routing)

– Better support for test-driven development

– Ideal for distributed and large teams

– High degree of control over the application 
behavior
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ASP .NET MVC Features

• Separation of application tasks

– Input logic, business logic, UI logic

• Support for test-driven development

– Unit testing 

– No need to start app server

• Extensible and pluggable framework

– Components easily replaceable or customized
(view engine, URL routing, data serialization,…)
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ASP .NET MVC Features (cont.)

• Support for Dependency Injection (DI)

– Injecting objects into a class

– Class doesn’t need to create objects itself

• Support for Inversion of Control (IOC)

– If an object requires another object, the first 
should get the second from an outside source 
(configuration file)
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ASP .NET MVC Features (cont.)

• Extensive support for ASP .NET routing

• Building apps with comprehensible and 
searchable URLs

• Customizable URLs 
– Adapted to work well with search engines 

– Adapted to REST addressing

– Decoupled from resource files

• Use of existing ASP .NET features 
(backward compatibility)
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ASP .NET MVC App Structure

• URLs mapped to controller classes

• Controller 
– handles requests, 

– executes appropriate logic and 

– calls a View to generate HTML response

• URL routing
– ASP .NET routing engine (flexible mapping)

– Support for defining customized routing rules

– Automatic passing/parsing of parameters
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ASP .NET App Structure

• No Postback
interaction!

• All user interactions 
routed to a controller

• No view state and 
page lifecycle events
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MVC App Execution

• Entry points to MVC: 

– UrlRoutingModule and MvcRouteHandler

• Request handling: 

– Select appropriate controller

– Obtain a specific controller instance

– Call the controller’s Execute method
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MVC App Execution - stages

• Receive first request for the application
– Populating RouteTable

• Perform routing
• Create MVC Request handler
• Create controller
• Execute controller
• Invoke action
• Execute result

– ViewResult, RedirectToRouteResult, ContentResult, 
FileResult, JsonResult, RedirectResult
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MVC App Execution
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RAZOR ENGINE
BUILDING VIEW PAGES USING RAZOR LANGUAGE
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Razor Engine

• A new view-engine

• Optimized around HTML generation

• Code-focused templating approach
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Razor Engine – Design goals

• Compact, Expressive and Fluid

• Easy to learn

• It is not a new language

• Works with any text editor

• Great Intellisense

• Unit-testable

– Testing views without server, controllers…
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Razor – HelloWorld

• Uses @ for 
Razor blocks

.aspx file

razor file
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Loops and Nested HTML

.aspx syntaxRazor syntax
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If Blocks and Multi-line Statements

Multi-Token 
statement

IF statement

Multi-line 
statement Variables 

Variables can span 
multiple server 

code blocks!
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Integrating Content and Code

Parser examines right-hand 
side of @ character.

Identifying nested 
content with HTML  

block  tag
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Layout/Master page

SiteLayout.cshtml

@RenderBody()
Including specific body content. 
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Content page

Explicitly setting LayoutPage property.

Complete HTML page.
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Master page – section overrides

This section is optional.

This section is optional.
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Master page – section overrides

Named section.

Named section.
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Master page – result html
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Re-usable “HTML Helpers”

• Methods that can be invoked 
within code-blocks

• Encapsulate generating HTML

• Implemented using pure code

• Work with Razor engine

Built-in HTML helper
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Define own HTML helpers

HTML Helper definition

HTML Helper Invocation

@helper 
declarative syntax

HTML Helper should be placed 
to Views\Helper directory.

Helper’s parameters (full 
language and ebugging support)
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Visual Studio support
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Razor – Summary

• A good new view engine

• Code-focused templating

• Fast and expressive

• Compact syntax

• Integrated with C# and VB
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CREATING ASP .NET MVC 
APPLICATION
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New Project …
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Select the project template
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ASP .NET MVC App Home page
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Run the application…
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Expand the default App menu
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ADDING CONTROLLER
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Adding controller
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Adding controller (cont.)
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Adding a controller (cont.)
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Testing the controller
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Mapping controller

• Controller selection based on URL

• Default URL routing logic:
/[Controller]/[ActionName]/[Parameters]

• Format for routing in
App_Start/RouteConfig.cs
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URL routing

• Webapp URL without URL segments => 
HomeController::Index()

• Index() – default method of a controller

• /HelloWorld => HelloWorldController

• /HelloWorld/Index => 
HelloWorldController::Index()

• http://webapp:port/HelloWorld/Welcome =>
HelloWorldController::Welcome()
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Parameters

• /HelloWorld/Welcome?name=Scott&numtimes=4

• Introducing 2 parameters to Welcome method

• Parameters passed as query strings!
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URL Parameters

• http://webapp/HelloWorld/Welcome/3?name=Rick

Parameter ID matches URL specification 
in RegisterRoutes method.
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ADDING A VIEW

46 of 114



Views

• Views created using Razor view engine

• Controller method returns View object

• Controller method return type is ActionResult

• Common pattern: all view pages share the 
same master layout page
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Create View page
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Create View page

Master page.
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Implementing View page

Selected master page. Index, by default.

Change controller’s method signature.
The method retures a view object: 

searches a view file that is named the 
same as the method (Index.cshtml). 50 of 114



ViewBag

• Pass data between view template and 
layout view file

• ViewBag is a dynamic object
(has no defined properties)

Layout view file.

View template file.
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Passing data from Controller to View

• View is used for data presentation

• Controller must provide a view with the data

• One approach: using ViewBag

– Controller puts data to ViewBag, 

– View reads ViewBag and renders the data

– No data binding! 

• Alternative approach: the view model

– Strongly typed approach
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Passing data from Controller to View

Controller
View

Returns 
HelloWorldView

object.
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ADDING A MODEL
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Model components

• Entity framework - data access technology

• “Code first” development paradigm
(first code classes, then generate DB schema)

• “Database first” development paradigm
define db schema first, 
then generate models, controllers and views
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Adding a model class

Enter the class name, 
e.g. Movie.cs
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Adding properties to a model class
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Adding a DbContext class

EF database 
context
FETCH, 
INSERT, 
UPDATE

EF namespace
DbContext

DbSet
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DB Connection string

Separate connection string 
for each DbContex class 
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Accessing Model from a Controller
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Accessing Model from a Controller

Visual Studio Creates: 
A controller MoviesController.cs

file in Controllers folder,
Create.cshtml, Delete.cshtml, 
Details.cshtml, Index.cshtml in 

Views\Movies folder.

Strongly typed 
approach.
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Run Application…

Notice: default routing

Creates a new movie.

Database is still empty. Notice: generic column 
name, derived from the 

model class.
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Creating a model object

Automatically generated form, 
based on the model info.
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Generated Controller class

Instantiated 
DbContext instance.

Index method.
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Strongly typed models

• MVC provides strongly typed way of passing 
data from Controller to View

• Better compile-time checking

• Richer IntelliSense in VS code editor
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Strongly typed models

Id parameter generally passed as a part of 
the route.

@model:  Specifies class of the model 

Context-sensitive 
data access.

Communicates 
with the master 

page.
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Strongly typed models (cont.)

Index.cshtml

Model object is strongly typed.
Each item is a Movie object.

Full compile-time 
support.
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Edit View

Localhost:1234/movies/Edit/4 URL generated using Html Helpers!
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Edit View (cont.)

Parameter passed through the URL query. 
Works for MVC default URL mapping.

Label defined in the 
model class.

Date format defined in 
the model class.
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Edit View

Generates hidden anti-forgery 
token.

Generates html label.

Generates text box.

Generates validation message.
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Property annotations

Overrides default label name on the view page.

Workaround for 
a bug in Chrome 



Annotations namespace.

Specifies type of the data: displays only date part.
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ActionLink helper

• Html.ActionLink – generates a link according to 
a given URL mapping policy

• Primer:
Html.ActionLink(“Edit", “Edit", new{id=item.ID)}

Anonymous object –
specifies ID of an object

Controller action name.
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Edit actions

• Implemented as Controller’s operations

HTTP GET operation HTTP POST operation

[HttpGet] annotation by 
default.

[Bind] attribute – a 
security mechanism that 

prevents over-posting 
data to the model.

Prevents request forgery
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Processing the POST request
HTTP POST method. Validates the forgery token.

Checks if sent data are valid – server side validation, 
compared to client-side validation (javascript)

Redirects after successful update.

In case of invalid data, the original form is returned 
back to the client, displaying error messages
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HTTP methods – best practices

• HttpGet and HttpPost method overloads

• All methods that modify data SHOULD use 
HttpPost method overload

• Modifying data in HttpGet method 
– security risk

– Violates HTTP best practices

– Violates REST architectural pattern

• GET method SHOULD NOT have any side effect 
and SHOULD NOT modify persistent data
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ADDING SEARCH
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Search form – Index.cshtml

Enter a text filtering value.
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View/Controller – changes

View (changes)
Controller – changed signature of 

the method Index.

LINQ query definition 
(NOT execution!)

Lambda expression
Default form 

method = POST!

Use overriden BeginForm method 
to force HttpGet method.
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Searching movies – URL query

HTTP POST HTTP GET
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Adding search by Genre
HttpGet method handles 

the request.
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Search by Genre – View

DropDown list markup.
Parameter “movieGenre” is 

the key for populating 
dropdown list from ViewBag.

Preselected value.
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Search by Genre – Controller

Key movieGenre is the 
same as the parameter 
of the dropdown list.

Populating  the 
list of genres in 

ViewBag.
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Details method - Controller
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Delete method - Controller
HttpGet method. 

Selects an objects and 
returns Details page.

HttpPost method. 
Deletes an object 

having the given id.

RULE: 
Never use a HttpGet method 

to modify the model. 
Opens security holes, 
architecturally bad!

Asp .net maps a segment of URL 
to a method. 

Attribute ActionName is 
necessary to provide valid URL 

routing. 
The same URL maps to different 
action methods, based on used 

HTTP method.
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Data Validation

• Keep Things DRY 
(Don’t Repeat Yourself)

• Declarative validation rules in one place
(Model class)
– Regular expressions
– Range validation
– Length validation
– NULL values validation 
– Data formatting

• Validation rules enforced before saving changes 
to the database!
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Validation rules – Model

Several validation rules failed.
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Data Validation - View

Client-side validation: javascript
(jQuery).

Validation rules picked up from the 
model class annotations.

Validation messages derived from the 
validation constraints in the model 

class.
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Data Validation – View (cont.)

Validation message derived from the 
validation constraints specified for 

the given Property (Title)
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Data Validation - Controller

HttpGet method displays initial Create form.

HttpPost method that does create a new object.

Server-side data validation check.
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DataType attributes

• Provide only hits for the view engine 
to format the data

• Date, Time, PhoneNumber, EmailAddress,…

• Automatic provision of type specific features
e.g. “mailto: ...” link for EmailAddress

• Do NOT provide any Validation 
(just presentation hints)
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DisplayFormat annotation

• Used to explicitly specify format of the data

• Example: redefining the default date format

It is possible to specify validation 
properties in one line!
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LAMBDA EXPRESSIONS
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Introduction

• Expressions that use special syntax

• Anonymous functions used as data 
(variables, fields, parameters, return values)

• The anonymous functions are used to create 
delegates and expression trees

• Lambda expressions particularly helpful for 
writing LINQ queries

• Available from .NET 4.5
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Operator =>

• Interpreted as “goes to”

• Used for declaring a lambda expression

• The same priority as assignment (=)

• Right associative operator

• Separates the parameters and function body

Left side

An Empty parameter list

A formal parameter list

An implicit parameter list

Right side

An expression

A Statement list inside curly brackects. 

=>
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Anonymous functions

• Inline statements or expressions

• Used wherever a delegate type is expected

• It can initialize a named delegete

• It can be passed as the parameter where 
a named delegate type is expected

• Two kinds of anonymous functions

– Anonymous methods

– Lambda expressions
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Evolution of delegates in C#

Named method

Inline code 
(anonymous method)

Lambda expression
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Anonymous method

• No name, no overloading 

• Created using the delegate keyword

• It is possible to add multiple statements
inside its body
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Anonymous method (cont.)

• Scope of the parameters is the anonymous 
method block

• No jump from inside an anonymous method 
block to the outside, and vice versa.

• Cannot access ref and out parameters of an 
outer scope

• No unsafe code access inside its block

• Not allowed on the left side of the operator 
is.
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Expression lambdas

• Lambda expression with an expression on the 
right side of the operator =>

• Used dominantly in construction of 
expression trees

• (input parameters) => expression

• Parentheses optional if lambda has one param.

• Input parameters separated by comma
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Expression lambdas - examples

• (x, y) => x == y
The parameters types inferred by the compiler

• (int x, string s) => s.Length > x
Specify types of the parameters when the compiler 
cannot inferre them from the code.

• () => SomeMethod()
Zero input parameters specified with empty 
parentheses. 
Note: a method call cannot be evaluated outside 
the .NET Framework (e.g. SQL Server)
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Statement lambdas

• (input parameters) => {statement;}

• Statements enclosed in braces

• The body of a statement lambda can contain 
multiple statements (in practices, two-three)

• Cannot be used to create expression trees
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Generic delegates – Func

• System.Func<T,TResult>
T – argument type, 
TResult – return type (last type parameter)

• Useful for encapsulating user-defined 
expressions that are applied to all elements of 
a data set

A generic declaration of the delegate Func.

Example of usage.
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Func delegate (cont.)

• A lambda expression can be passed where 
Expression<Func> type is required

– System.Linq.Queryable

Compiler can infere the 
type of the parameter n.

Output: 5, 4, 1, 3

Output: 5, 1, 3, 9, 7

Output: 5, 4
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Type inference in lambdas

• Compiler can infer the type of the parameters 
based on:

– Lambda’s body

– Parameter’s delegate type 

• Example:
IEnumerable<Customer> customers=...

Standard query operator.
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Lambda expressions – general rules

• The lambda must contain the same number of 
parameters as the delegate type

• Each input parameter in the lambda must be 
implicitly convertible to its corresponding 
delegate parameter

• The return value of the lambda (if any) must 
be implicitly convertible to the delegate’s 
return type
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Lambda expressions - examples

• Func<int,int> f1 = x => x+1;

• Func<int,int> f2 = x => {return x+1;}

• Func<int,int> f3 = (int x) => x +1;

• Func<int,int> f4 = (int x) => {return x+1;}

• Func<int,int> f7 = delegate(int x) {return x+1;}

• Invocation example: 
Console.Writeln(f1.Invoke(4));
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Lambda expressions - examples

• Func<int,int,int> f5= (x,y) => x*y
Invocation:  Console.Writeln(f5.Invoke(2,2));

• Action f6 = () => Console.Writeline();
Function instance that does not receive any 
parameter nor returns value.
Invocation:  f6.Invoke();

• Func<int> f8 = delegate { return 1+1;}
Invocation:  Console.Writeln(f8());
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LINQ
Language Integrated Query
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Content

• Undestand what LINQ is?

• Learn what problems solves

• See what its syntax looks like

• Know where LINQ can be used
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What is LINQ?

• Language INtegrated Query

• It is part of programming language syntax

• Supported by: C#, VB, Delphi Prism

• Used for querying data

• Supported the following types of data sources

– Relational data

– XML data

– objects
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LINQ Architecture
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ADO .NET vs. LINQ

ADO .NET

• OO library for relational 
data access

• Mapping from relational to 
OO objects needed!

• High Impedance Missmatch
for mapping data from 
storage to objects in an 
application

LINQ

• SQL-Like syntax that deals 
with pure objects

• Reduces the Impedance 
Missmatch

• Makes data querying more 
efficient

• One still must know the 
format of the data
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LINQ Adapters

• LINQ to Objects

• LINQ to SQL

• LINQ to XML

• LINQ to Entities

• It is possible to create own customized adapter

– E.g. LINQ for Querying Twitter API
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