
ASP .NET MVC 5

Nemanja Kojic, MScEE

1

What is MVC?

• Model-View-Controller (MVC)

• Standard Architectural Pattern

• Separation of concerns:
model, view, controller

2 of 114

ASP .NET MVC Framework

• An alternative to ASP .NET Web Forms

• Presentation framework
– Lightweight

– Highly testable

– Integrated with the
existing ASP .NET
features:
• Master pages

• Membership-Based
Authentication

• ...

3 of 114

ASP .NET MVC Framework
Components

• Models
– Business/domain logic
– Model objects, retrieve and store model state in a

persistent storage (database).

• Views
– Display application’s UI
– UI created from the model data

• Controllers
– Handle user input and interaction
– Work with model
– Select a view for rendering UI

4 of 114

When to use MVC approach?

• Advantages:

– Easier to manage complexity (divide and conquer)

– It does not use server forms and view state

– Front Controller pattern (rich routing)

– Better support for test-driven development

– Ideal for distributed and large teams

– High degree of control over the application
behavior

5 of 114

ASP .NET MVC Features

• Separation of application tasks

– Input logic, business logic, UI logic

• Support for test-driven development

– Unit testing

– No need to start app server

• Extensible and pluggable framework

– Components easily replaceable or customized
(view engine, URL routing, data serialization,…)

6 of 114

ASP .NET MVC Features (cont.)

• Support for Dependency Injection (DI)

– Injecting objects into a class

– Class doesn’t need to create objects itself

• Support for Inversion of Control (IOC)

– If an object requires another object, the first
should get the second from an outside source
(configuration file)

7 of 114

ASP .NET MVC Features (cont.)

• Extensive support for ASP .NET routing

• Building apps with comprehensible and
searchable URLs

• Customizable URLs
– Adapted to work well with search engines

– Adapted to REST addressing

– Decoupled from resource files

• Use of existing ASP .NET features
(backward compatibility)

8 of 114

ASP .NET MVC App Structure

• URLs mapped to controller classes

• Controller
– handles requests,

– executes appropriate logic and

– calls a View to generate HTML response

• URL routing
– ASP .NET routing engine (flexible mapping)

– Support for defining customized routing rules

– Automatic passing/parsing of parameters

9 of 114

ASP .NET App Structure

• No Postback
interaction!

• All user interactions
routed to a controller

• No view state and
page lifecycle events

10 of 114

MVC App Execution

• Entry points to MVC:

– UrlRoutingModule and MvcRouteHandler

• Request handling:

– Select appropriate controller

– Obtain a specific controller instance

– Call the controller’s Execute method

11 of 114

MVC App Execution - stages

• Receive first request for the application
– Populating RouteTable

• Perform routing
• Create MVC Request handler
• Create controller
• Execute controller
• Invoke action
• Execute result

– ViewResult, RedirectToRouteResult, ContentResult,
FileResult, JsonResult, RedirectResult

12 of 114

MVC App Execution

13 of 114

RAZOR ENGINE
BUILDING VIEW PAGES USING RAZOR LANGUAGE

14 of 114

Razor Engine

• A new view-engine

• Optimized around HTML generation

• Code-focused templating approach

15 of 114

Razor Engine – Design goals

• Compact, Expressive and Fluid

• Easy to learn

• It is not a new language

• Works with any text editor

• Great Intellisense

• Unit-testable

– Testing views without server, controllers…

16 of 114

Razor – HelloWorld

• Uses @ for
Razor blocks

.aspx file

razor file

17 of 114

Loops and Nested HTML

.aspx syntaxRazor syntax

18 of 114

If Blocks and Multi-line Statements

Multi-Token
statement

IF statement

Multi-line
statement Variables

Variables can span
multiple server

code blocks!

19 of 114

Integrating Content and Code

Parser examines right-hand
side of @ character.

Identifying nested
content with HTML

block tag

20 of 114

Layout/Master page

SiteLayout.cshtml

@RenderBody()
Including specific body content.

21 of 114

Content page

Explicitly setting LayoutPage property.

Complete HTML page.

22 of 114

Master page – section overrides

This section is optional.

This section is optional.

23 of 114

Master page – section overrides

Named section.

Named section.

24 of 114

Master page – result html

25 of 114

Re-usable “HTML Helpers”

• Methods that can be invoked
within code-blocks

• Encapsulate generating HTML

• Implemented using pure code

• Work with Razor engine

Built-in HTML helper

26 of 114

Define own HTML helpers

HTML Helper definition

HTML Helper Invocation

@helper
declarative syntax

HTML Helper should be placed
to Views\Helper directory.

Helper’s parameters (full
language and ebugging support)

27 of 114

Visual Studio support

28 of 114

Razor – Summary

• A good new view engine

• Code-focused templating

• Fast and expressive

• Compact syntax

• Integrated with C# and VB

29 of 114

CREATING ASP .NET MVC
APPLICATION

30 of 114

New Project …

31

32 of 114

Select the project template

33

ASP .NET MVC App Home page

34

Run the application…

35

Expand the default App menu

36

ADDING CONTROLLER

37 of 114

Adding controller

38

Adding controller (cont.)

39

Adding a controller (cont.)

40

Testing the controller

41

Mapping controller

• Controller selection based on URL

• Default URL routing logic:
/[Controller]/[ActionName]/[Parameters]

• Format for routing in
App_Start/RouteConfig.cs

42 of 114

URL routing

• Webapp URL without URL segments =>
HomeController::Index()

• Index() – default method of a controller

• /HelloWorld => HelloWorldController

• /HelloWorld/Index =>
HelloWorldController::Index()

• http://webapp:port/HelloWorld/Welcome =>
HelloWorldController::Welcome()

43 of 114

Parameters

• /HelloWorld/Welcome?name=Scott&numtimes=4

• Introducing 2 parameters to Welcome method

• Parameters passed as query strings!

44 of 114

URL Parameters

• http://webapp/HelloWorld/Welcome/3?name=Rick

Parameter ID matches URL specification
in RegisterRoutes method.

45 of 114

ADDING A VIEW

46 of 114

Views

• Views created using Razor view engine

• Controller method returns View object

• Controller method return type is ActionResult

• Common pattern: all view pages share the
same master layout page

47 of 114

Create View page

48 of 114

Create View page

Master page.

49 of 114

Implementing View page

Selected master page. Index, by default.

Change controller’s method signature.
The method retures a view object:

searches a view file that is named the
same as the method (Index.cshtml). 50 of 114

ViewBag

• Pass data between view template and
layout view file

• ViewBag is a dynamic object
(has no defined properties)

Layout view file.

View template file.

51 of 114

Passing data from Controller to View

• View is used for data presentation

• Controller must provide a view with the data

• One approach: using ViewBag

– Controller puts data to ViewBag,

– View reads ViewBag and renders the data

– No data binding!

• Alternative approach: the view model

– Strongly typed approach

52 of 114

Passing data from Controller to View

Controller
View

Returns
HelloWorldView

object.

53 of 114

ADDING A MODEL

54 of 114

Model components

• Entity framework - data access technology

• “Code first” development paradigm
(first code classes, then generate DB schema)

• “Database first” development paradigm
define db schema first,
then generate models, controllers and views

55 of 114

Adding a model class

Enter the class name,
e.g. Movie.cs

56 of 114

Adding properties to a model class

57 of 114

Adding a DbContext class

EF database
context
FETCH,
INSERT,
UPDATE

EF namespace
DbContext

DbSet

58 of 114

DB Connection string

Separate connection string
for each DbContex class

59 of 114

Accessing Model from a Controller

60 of 114

Accessing Model from a Controller

Visual Studio Creates:
A controller MoviesController.cs

file in Controllers folder,
Create.cshtml, Delete.cshtml,
Details.cshtml, Index.cshtml in

Views\Movies folder.

Strongly typed
approach.

61 of 114

Run Application…

Notice: default routing

Creates a new movie.

Database is still empty. Notice: generic column
name, derived from the

model class.

62 of 114

Creating a model object

Automatically generated form,
based on the model info.

63 of 114

Generated Controller class

Instantiated
DbContext instance.

Index method.

64 of 114

Strongly typed models

• MVC provides strongly typed way of passing
data from Controller to View

• Better compile-time checking

• Richer IntelliSense in VS code editor

65 of 114

Strongly typed models

Id parameter generally passed as a part of
the route.

@model: Specifies class of the model

Context-sensitive
data access.

Communicates
with the master

page.

66 of 114

Strongly typed models (cont.)

Index.cshtml

Model object is strongly typed.
Each item is a Movie object.

Full compile-time
support.

67 of 114

Edit View

Localhost:1234/movies/Edit/4 URL generated using Html Helpers!

68 of 114

Edit View (cont.)

Parameter passed through the URL query.
Works for MVC default URL mapping.

Label defined in the
model class.

Date format defined in
the model class.

69 of 114

Edit View

Generates hidden anti-forgery
token.

Generates html label.

Generates text box.

Generates validation message.

70 of 114

Property annotations

Overrides default label name on the view page.

Workaround for
a bug in Chrome



Annotations namespace.

Specifies type of the data: displays only date part.

71 of 114

ActionLink helper

• Html.ActionLink – generates a link according to
a given URL mapping policy

• Primer:
Html.ActionLink(“Edit", “Edit", new{id=item.ID)}

Anonymous object –
specifies ID of an object

Controller action name.

72 of 114

Edit actions

• Implemented as Controller’s operations

HTTP GET operation HTTP POST operation

[HttpGet] annotation by
default.

[Bind] attribute – a
security mechanism that

prevents over-posting
data to the model.

Prevents request forgery

73 of 114

Processing the POST request
HTTP POST method. Validates the forgery token.

Checks if sent data are valid – server side validation,
compared to client-side validation (javascript)

Redirects after successful update.

In case of invalid data, the original form is returned
back to the client, displaying error messages

74 of 114

HTTP methods – best practices

• HttpGet and HttpPost method overloads

• All methods that modify data SHOULD use
HttpPost method overload

• Modifying data in HttpGet method
– security risk

– Violates HTTP best practices

– Violates REST architectural pattern

• GET method SHOULD NOT have any side effect
and SHOULD NOT modify persistent data

75 of 114

ADDING SEARCH

76 of 114

Search form – Index.cshtml

Enter a text filtering value.

77 of 114

View/Controller – changes

View (changes)
Controller – changed signature of

the method Index.

LINQ query definition
(NOT execution!)

Lambda expression
Default form

method = POST!

Use overriden BeginForm method
to force HttpGet method.

78 of 114

Searching movies – URL query

HTTP POST HTTP GET

79 of 114

Adding search by Genre
HttpGet method handles

the request.

80 of 114

Search by Genre – View

DropDown list markup.
Parameter “movieGenre” is

the key for populating
dropdown list from ViewBag.

Preselected value.

81 of 114

Search by Genre – Controller

Key movieGenre is the
same as the parameter
of the dropdown list.

Populating the
list of genres in

ViewBag.

82 of 114

Details method - Controller

83 of 114

Delete method - Controller
HttpGet method.

Selects an objects and
returns Details page.

HttpPost method.
Deletes an object

having the given id.

RULE:
Never use a HttpGet method

to modify the model.
Opens security holes,
architecturally bad!

Asp .net maps a segment of URL
to a method.

Attribute ActionName is
necessary to provide valid URL

routing.
The same URL maps to different
action methods, based on used

HTTP method.

84 of 114

Data Validation

• Keep Things DRY
(Don’t Repeat Yourself)

• Declarative validation rules in one place
(Model class)
– Regular expressions
– Range validation
– Length validation
– NULL values validation
– Data formatting

• Validation rules enforced before saving changes
to the database!

85 of 114

Validation rules – Model

Several validation rules failed.

86 of 114

Data Validation - View

Client-side validation: javascript
(jQuery).

Validation rules picked up from the
model class annotations.

Validation messages derived from the
validation constraints in the model

class.

87 of 114

Data Validation – View (cont.)

Validation message derived from the
validation constraints specified for

the given Property (Title)

88 of 114

Data Validation - Controller

HttpGet method displays initial Create form.

HttpPost method that does create a new object.

Server-side data validation check.

89 of 114

DataType attributes

• Provide only hits for the view engine
to format the data

• Date, Time, PhoneNumber, EmailAddress,…

• Automatic provision of type specific features
e.g. “mailto: ...” link for EmailAddress

• Do NOT provide any Validation
(just presentation hints)

90 of 114

DisplayFormat annotation

• Used to explicitly specify format of the data

• Example: redefining the default date format

It is possible to specify validation
properties in one line!

91 of 114

LAMBDA EXPRESSIONS

92 of 114

Introduction

• Expressions that use special syntax

• Anonymous functions used as data
(variables, fields, parameters, return values)

• The anonymous functions are used to create
delegates and expression trees

• Lambda expressions particularly helpful for
writing LINQ queries

• Available from .NET 4.5

93 of 114

Operator =>

• Interpreted as “goes to”

• Used for declaring a lambda expression

• The same priority as assignment (=)

• Right associative operator

• Separates the parameters and function body

Left side

An Empty parameter list

A formal parameter list

An implicit parameter list

Right side

An expression

A Statement list inside curly brackects.

=>

94 of 114

Anonymous functions

• Inline statements or expressions

• Used wherever a delegate type is expected

• It can initialize a named delegete

• It can be passed as the parameter where
a named delegate type is expected

• Two kinds of anonymous functions

– Anonymous methods

– Lambda expressions

95 of 114

Evolution of delegates in C#

Named method

Inline code
(anonymous method)

Lambda expression

96 of 114

Anonymous method

• No name, no overloading

• Created using the delegate keyword

• It is possible to add multiple statements
inside its body

97 of 114

Anonymous method (cont.)

• Scope of the parameters is the anonymous
method block

• No jump from inside an anonymous method
block to the outside, and vice versa.

• Cannot access ref and out parameters of an
outer scope

• No unsafe code access inside its block

• Not allowed on the left side of the operator
is.

98 of 114

Expression lambdas

• Lambda expression with an expression on the
right side of the operator =>

• Used dominantly in construction of
expression trees

• (input parameters) => expression

• Parentheses optional if lambda has one param.

• Input parameters separated by comma

99 of 114

Expression lambdas - examples

• (x, y) => x == y
The parameters types inferred by the compiler

• (int x, string s) => s.Length > x
Specify types of the parameters when the compiler
cannot inferre them from the code.

• () => SomeMethod()
Zero input parameters specified with empty
parentheses.
Note: a method call cannot be evaluated outside
the .NET Framework (e.g. SQL Server)

100 of 114

Statement lambdas

• (input parameters) => {statement;}

• Statements enclosed in braces

• The body of a statement lambda can contain
multiple statements (in practices, two-three)

• Cannot be used to create expression trees

101 of 114

Generic delegates – Func

• System.Func<T,TResult>
T – argument type,
TResult – return type (last type parameter)

• Useful for encapsulating user-defined
expressions that are applied to all elements of
a data set

A generic declaration of the delegate Func.

Example of usage.

102 of 114

Func delegate (cont.)

• A lambda expression can be passed where
Expression<Func> type is required

– System.Linq.Queryable

Compiler can infere the
type of the parameter n.

Output: 5, 4, 1, 3

Output: 5, 1, 3, 9, 7

Output: 5, 4

103 of 114

Type inference in lambdas

• Compiler can infer the type of the parameters
based on:

– Lambda’s body

– Parameter’s delegate type

• Example:
IEnumerable<Customer> customers=...

Standard query operator.

104 of 114

Lambda expressions – general rules

• The lambda must contain the same number of
parameters as the delegate type

• Each input parameter in the lambda must be
implicitly convertible to its corresponding
delegate parameter

• The return value of the lambda (if any) must
be implicitly convertible to the delegate’s
return type

105 of 114

Lambda expressions - examples

• Func<int,int> f1 = x => x+1;

• Func<int,int> f2 = x => {return x+1;}

• Func<int,int> f3 = (int x) => x +1;

• Func<int,int> f4 = (int x) => {return x+1;}

• Func<int,int> f7 = delegate(int x) {return x+1;}

• Invocation example:
Console.Writeln(f1.Invoke(4));

106 of 114

Lambda expressions - examples

• Func<int,int,int> f5= (x,y) => x*y
Invocation: Console.Writeln(f5.Invoke(2,2));

• Action f6 = () => Console.Writeline();
Function instance that does not receive any
parameter nor returns value.
Invocation: f6.Invoke();

• Func<int> f8 = delegate { return 1+1;}
Invocation: Console.Writeln(f8());

107 of 114

LINQ
Language Integrated Query

108 of 114

Content

• Undestand what LINQ is?

• Learn what problems solves

• See what its syntax looks like

• Know where LINQ can be used

109 of 114

What is LINQ?

• Language INtegrated Query

• It is part of programming language syntax

• Supported by: C#, VB, Delphi Prism

• Used for querying data

• Supported the following types of data sources

– Relational data

– XML data

– objects

110 of 114

LINQ Architecture

111 of 114

ADO .NET vs. LINQ

ADO .NET

• OO library for relational
data access

• Mapping from relational to
OO objects needed!

• High Impedance Missmatch
for mapping data from
storage to objects in an
application

LINQ

• SQL-Like syntax that deals
with pure objects

• Reduces the Impedance
Missmatch

• Makes data querying more
efficient

• One still must know the
format of the data

112

LINQ Adapters

• LINQ to Objects

• LINQ to SQL

• LINQ to XML

• LINQ to Entities

• It is possible to create own customized adapter

– E.g. LINQ for Querying Twitter API

113 of 114

References

• ASP .NET MVC 5 Tutorial – Official
http://www.asp.net/mvc/tutorials/mvc-
5/introduction/getting-started

• Lambda expressions
http://www.dotnetperls.com/lambda

• LINQ
http://code.msdn.microsoft.com/101-LINQ-
Samples-3fb9811b

114 of 114

http://www.asp.net/mvc/tutorials/mvc-5/introduction/getting-started
http://www.asp.net/mvc/tutorials/mvc-5/introduction/getting-started
http://www.asp.net/mvc/tutorials/mvc-5/introduction/getting-started
http://www.asp.net/mvc/tutorials/mvc-5/introduction/getting-started
http://www.asp.net/mvc/tutorials/mvc-5/introduction/getting-started
http://www.asp.net/mvc/tutorials/mvc-5/introduction/getting-started
http://www.dotnetperls.com/lambda
http://www.dotnetperls.com/lambda
http://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
http://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
http://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
http://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
http://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
http://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
http://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
http://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b

